

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.39.042.A № 15146

Срок действия до 12 ноября 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Электрокардиографы двенадцатиканальные с регистрацией ЭКГ в ручном и автоматическом режимах миниатюрные ЭК 12Т-01-"Р-Д"

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью научно-производственное предприятие "Монитор" (ООО "НПП "Монитор"), г. Ростов-на-Дону

РЕГИСТРАЦИОННЫЙ № 25081-03

ДОКУМЕНТ НА ПОВЕРКУ Р 50.2.009-2011

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Свидетельство об утверждении типа продлено приказом Федерального агентства по техническому регулированию и метрологии от **12 ноября 2013 г.** № **1325**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства

Ф.В.Булыгин

... 2013 г

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Электрокардиографы двенадцатиканальные с регистрацией ЭКГ в ручном и автоматическом режимах миниатюрные ЭК 12T-01-«Р-Д»

Назначение средства измерений

Электрокардиографы двенадцатиканальные с регистрацией ЭКГ в ручном и автоматическом режимах миниатюрные ЭК 12Т-01-«Р-Д» (далее по тексту — электрокардиографы) предназначены для измерения и регистрации биоэлектрических потенциалов сердца.

Описание средства измерений

Принцип действия электрокардиографа — снятие биоэлектрических потенциалов сердца посредством электродов, последующие усилие, обработка и регистрация сигналов.

Конструктивно электрокардиограф состоит из блока электрокардиографического, блока сетевого и кабеля электродного.

Блок электрокардиографический обеспечивает съем и усиление биопотенциалов, хранение их в памяти и вывод на термопринтер.

Блок сетевой обеспечивает электропитанием все узлы электрокардиографа и зарядку аккумуляторной батареи.

Электрокардиограф обеспечивает:

- печать электрокардиограмм (ЭКГ) на термобумаге;
- контроль обрыва электродов;
- фильтрацию сигнала антитреморным и сетевым фильтрами.

Электрокардиографы защищены от воздействия импульсов дефибриллятора.

Электрокардиографы изготавливаются в двух исполнениях, отличающихся типом и размерами экрана, объёмом внутренней памяти и возможностью наличия USB интерфейса. Исполнение 1: монохромный экран с диагональю 63 мм, память на 12 ЭКГ, интерфейс связи – RS232.

Исполнение 2: цветной экран с диагональю 141 мм, память на 500 ЭКГ, интерфейс связи – RS232 или USB.

Внешний вид электрокардиографа двенадцатиканального с регистрацией ЭКГ в ручном и автоматическом режимах миниатюрного ЭК 12Т-01-«Р-Д» представлен на рисунке 1.

а) исполнение 1

б) исполнение 2

Рисунок 1 - Внешний вид

Программное обеспечение

В исполнении 1 ЭК имеет встроенное программное обеспечение (Π O), исполняемое 8-разрядным микроконтроллером ATMEL ATMega8 (APU) и 16-разрядным микропроцессором RENESAS M30624FGPGP (CPU).

Микроконтроллер Atmel ATMega8 осуществляет предварительную обработку ЭКГ сигналов и через оптоэлектронную гальваническую развязку передает ЭКГ сигналы в основ-

ной процессор кардиографа — 16-разрядный микропроцессор Renesas M30624FGPGP. Он обеспечивает прием, обработку и хранение ЭКГ сигналов пациента, вывод их на термопринтер, а также управляет работой клавиатуры и ЖКИ индикатора.

В ЭК реализована защита от непреднамеренного изменения исполняемого кода микроконтроллера ATMEL ATMega8 и микропроцессора RENESAS M30624FGPGP, для чего при запуске ЭК осуществляется расчет и проверка контрольной суммы исполняемого кода для соответствующих микросхем.

Идентификационные данные программного обеспечения исполнения 1 указаны в таблице 1

Таблица 1

Идентификационное наименование программного обеспечения	Номер версии (идентификационны й номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
ЭК12Т-63-АРИ	4.01	884358a66ebfb0b5f27e8d14 36e10f1e	MD5
ЭК12Т-63-СРИ	4.01	7564641b2cd1908823f7b3b 812620c23	MD5

В исполнении 2 ЭК представляет собой встроенное ПО, исполняемое 8-разрядным микроконтроллером ATMEL ATMega8 (APU) и 32-разрядными микропроцессорами Atmel AT91R40008 (DPU) и NXP LPC2478 (CPU).

Микроконтроллер Atmel ATMega8 осуществляет предварительную обработку ЭКГ сигналов и через оптоэлектронную гальваническую развязку передает ЭКГ сигналы в процессор цифровой обработки сигналов — 32-разрядный микропроцессор Atmel AT91R40008. Он обеспечивает прием и фильтрацию ЭКГ сигналов пациента. Затем сигналы передаются в основной процессор NXP LPC2478, который осуществляет прием, обработку, хранение, вывод их на термопринтер, а также управляет работой клавиатуры, ЖКИ индикатора и модуля связи.

В ЭК реализована защита от непреднамеренного изменения исполняемого кода микроконтроллера ATMEL ATMega8 и микропроцессоров Atmel AT91R40008 и NXP LPC2478, для чего при запуске ЭК осуществляется расчет и проверка контрольной суммы исполняемого кода для соответствующих микросхем.

Идентификационные данные программного обеспечения исполнения 2 указаны в таблице 2

Таблица 2

таолица 2			
		Цифровой	Алгоритм
Идентификационное	Номер версии	идентификатор	вычисления
наименование	(идентификационный	программного	цифрового
программного	номер) программного	обеспечения	идентификатора
обеспечения	обеспечения	(контрольная сумма	программного
		исполняемого кода)	обеспечения
ЭК12Т-141-АРИ	0.03	521cdb37fd13c426a1ddba a9a870699a	MD5
ЭК12Т-141-DPU	1.03	32aa2e4a8ec1d39477355e 412ec7ad7e	MD5
ЭК12Т-141-СРU	1.06	e396169f1b8468f0088c44 dbe3d05cc6	MD5

Уровень защиты ПО соответствует уровню «А» согласно МИ 3286-2010. ПО контроллеров и измеренные данные достаточно защищены от преднамеренных и не преднамеренных изменений при помощи специальных средств защиты.

Метрологические и технические характеристики

Метрологические и технические характеристики электрокардиографов двенадцатиканальных с регистрацией ЭКГ в ручном и автоматическом режимах миниатюрных ЭК 12Т-01-«Р-Д» представлены в таблице 3.

Таблица 3

Таблица 3		
Диапазон напряжений регистрируемых входных сигналов, мВ		от 0,03 до 5,0
Пределы допускаемой относительной погрешности измерения на	апряже-	
ния в диапазонах, не более:		
от 0,1 до	0,5 мВ	±15 %
от 0,5 ,	до 4 мВ	±7 %
Нелинейность записи каждого отведения		±2 %
Чувствительность, мм/мВ		5; 10; 20 или 40
Пределы допустимой относительной погрешности установки ч	увстви-	±5 %.
тельности, не более		
Входной импеданс, не менее		5 МОм
Коэффициент ослабления синфазных сигналов ЭК, не менее		100000 (100 дБ)
Напряжение внутренних шумов, приведенных ко входу, не более		20 мкВ
Пределы допускаемой относительной погрешности измерения и	нтерва-	±7%.
лов времени при регистрации на бумагу в диапазоне интервалов в		
от 0,1 до 1,0 сек., не более		
Диапазон измерения ЧСС		от 30 до 225 уд/мин
Пределы допускаемой абсолютной погрешности измерения ЧСС,		± 1 уд/мин
не более		
Неравномерность амплитудно-частотной характеристики δ_f :		
в диапазоне частот от 0,5 д	о 60 Гц	от 90% до 105%
в диапазоне частот от 60 д	о 75 Гц	от 70% до 105%
ЭК обеспечивает два значения постоянной времени усилительны	х кана-	3,2 с и 0,45±0,1с
лов, не менее		
Пределы допустимой относительной погрешности регистрации к	алибро-	5 %
вочного сигнала, не более		
Дрейф нулевой линии за время регистрации отведения, не более		1,5 мм
Питание осуществляется		
в исполнении 1:		
- от сети переменного тока, часто	той, Гц	от 50 до 60
напряже	нием, В	от 198 до 242
- напряжение питания постоянного тока бортовой сети автомоб	биля, В	от 10 до 16
- напряжение питания от внутреннего источника питания, В		от 6 до 8
в исполнении 2:		5,
- от сети переменного тока, часто	той, Гц	от 50 до 60
напряже	нием, В	от 100 до 242
- напряжение питания постоянного тока бортовой сети автомоб	биля, В	от 12 до 16
- напряжение питания от внутреннего источника питания, В		7,4
Потребляемая мощность, В:А, не более		30
Масса в полном комплекте поставки для исполнения 1, кг, не боле	ee	3,5
Масса в полном комплекте поставки для исполнения 2, кг, не боле		4,0
Масса блока электрокардиографического, кг, не более		1,2
* * * * * * * * * * * * * * * * * * * *		

Габаритные разме	еры блока	электрокардиографического	исполнения 1	260×154×67
$(д\times m\times B)$, мм, не бо	олее			
Габаритные разме	еры блока	электрокардиографического	исполнения 2	250×174×63
(д×ш×в), мм, не бо	олее			

Знак утверждения типа

наносится на заднюю панель прибора методом шелкографии и на титульный лист руководства по эксплуатации методом печати.

Комплектность средства измерений

Комплект поставки электрокардиографа приведен в таблице 4:

Таблица 4		
Наименование	Обозначение документа	Количество
		шт.
1. Блок электрокардиографический	МТЦ.30.01.000	1
2. Кабель электродный	МТЦ.30.03.501	1
3. Блок сетевой БПН-6М-18050	ТУ 6589-002-54591351-2004	1
4. Комплект электродов	ТУ 9442001.2003	1
5. Термобумага 110ммх30м	BC-01	1
6. Гель электродный	ТУ 9441-003-34616468-98	1
7. Сумка	МТЦ.30.05.301	1
8. Руководство по эксплуатации	МТЦ.30.00.000 РЭ	1
по отдельному заказу для исполнения 2		
ПО для ПЭВМ на компакт-диске	МТЦ.30.07.501	
Термобумага в пачке	110мм×100мм×200листов	
Модуль СОМ-порта	МТЦ.31.06.501	
Модуль USB	МТЦ.31.04.501	
Кабель СОМ-порта (DB9F-DB9F)	-	
Кабель USB A-B	-	

Примечание - Вместо указанного комплекта электродов приборы могут поставляться с другими комплектами электродов, имеющих разрешение Минздрава МЗ РФ. Допускается применение другой термобумаги и геля электродного.

Поверка

осуществляется в соответствии с документом Р 50.2.009-2011 «Электрокардиографы, электрокардиоскопы и электрокардиоанализаторы. Методика поверки».

Основные средства поверки:

Генератор функциональный ГФ-07 (Госреестр № 12289-90).

Сведения о методиках (методах) измерений

изложены в документах «Электрокардиографы двенадцатиканальные с регистрацией ЭКГ в ручном и автоматическом режимах миниатюрные ЭК 12Т-01-«Р-Д». Руководство по эксплуатации» и «Электрокардиографы двенадцатиканальные с регистрацией ЭКГ в ручном и автоматическом режимах миниатюрные ЭК 12Т-01-«Р-Д» с экраном 141 мм. Руководство по эксплуатации»

Нормативные и технические документы, устанавливающие требования к электрокардиографам двенадцатиканальным с регистрацией ЭКГ в ручном и автоматическом режимах миниатюрным ЭК 12Т-01-«Р-Д»

ΓΟCT IEC 60601-2-	Изделия медицинские электрические. Часть 2-51. Частные требования
51-2011	безопасности с учетом основных функциональных характеристик к
	регистрирующим и анализирующим одноканальным и многоканальным
	электрокардиографам.
ΓΟCT P 50444-92	Приборы, аппараты и оборудование медицинские. Общие технические
	условия.
ΓΟCT P 50267.0-92	Изделия медицинские электрические. Часть 1. Общие требования
	безопасности
ΓΟCT P 50267.0.2-	Изделия медицинские электрические. Часть 1-2. Общие требования
2005	безопасности. Электромагнитная совместимость. Требования и методы
	испытаний
ΓΟCT P 50267.25-94	Изделия медицинские электрические. Часть 2. Частные требования
(MЭК 601-2-25-93)	безопасности к электрокардиографам
ΓΟCT IEC 60601-1-	Изделия медицинские электрические. Часть 1-1. Общие требования
1-2011	безопасности. Требования безопасности к медицинским электрическим
	системам
ТУ 9441-005-	Электрокардиографы двенадцатиканальные с регистрацией ЭКГ в
24149103-2003	ручном и автоматическом режимах миниатюрные ЭК 12T-01-«Р-Д».
	Технические условия

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении деятельности в области здравоохранения

Изготовитель

Общество с ограниченной ответственностью «Научно-производственное предприятие «Монитор» (ООО «НПП «Монитор»).

Адрес: 344068, г. Ростов-на-Дону, ул. Краснокурсантская, 104а.

тел: (863) 243-61-11 факс: (863) 243-61-11. E-mail: mon@monitor-ltd.ru Web: http://www.monitor-ltd.ru/

Испытательный центр

Государственный центр испытаний средств измерений Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Ростовский области» (ГЦИ СИ Φ БУ «Ростовский ЦСМ»)

Адрес: 344000, г. Ростов-на-Дону, пр. Соколова, 58.

тел.:(863)264-19-74, 290-44-88, факс: (863)291-08-02, 290-44-88.

E-mail: rost_csm@aaanet.ru, metrcsm@aaanet.ru

Web: http://www.csm.rostov.ru

Аттестат аккредитации ФБУ «Ростовский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30042-13 от 11.12.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

2014 г.

Achoe M

ПРОШНУРОВАНО, ПРОНУМЕРОВАНО И СКРЕПЛЕНО ПЕЧАТЬЮ

 $\frac{5/n3m6}{}$ листов(A)

